3.1228 \(\int \frac {x^6}{\sqrt [4]{a-b x^4}} \, dx\)

Optimal. Leaf size=109 \[ \frac {a^{3/2} x \sqrt [4]{1-\frac {a}{b x^4}} E\left (\left .\frac {1}{2} \csc ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )\right |2\right )}{4 b^{3/2} \sqrt [4]{a-b x^4}}-\frac {a \left (a-b x^4\right )^{3/4}}{4 b^2 x}-\frac {x^3 \left (a-b x^4\right )^{3/4}}{6 b} \]

[Out]

-1/4*a*(-b*x^4+a)^(3/4)/b^2/x-1/6*x^3*(-b*x^4+a)^(3/4)/b+1/4*a^(3/2)*(1-a/b/x^4)^(1/4)*x*(cos(1/2*arccsc(x^2*b
^(1/2)/a^(1/2)))^2)^(1/2)/cos(1/2*arccsc(x^2*b^(1/2)/a^(1/2)))*EllipticE(sin(1/2*arccsc(x^2*b^(1/2)/a^(1/2))),
2^(1/2))/b^(3/2)/(-b*x^4+a)^(1/4)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 109, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {321, 311, 313, 335, 275, 228} \[ \frac {a^{3/2} x \sqrt [4]{1-\frac {a}{b x^4}} E\left (\left .\frac {1}{2} \csc ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )\right |2\right )}{4 b^{3/2} \sqrt [4]{a-b x^4}}-\frac {a \left (a-b x^4\right )^{3/4}}{4 b^2 x}-\frac {x^3 \left (a-b x^4\right )^{3/4}}{6 b} \]

Antiderivative was successfully verified.

[In]

Int[x^6/(a - b*x^4)^(1/4),x]

[Out]

-(a*(a - b*x^4)^(3/4))/(4*b^2*x) - (x^3*(a - b*x^4)^(3/4))/(6*b) + (a^(3/2)*(1 - a/(b*x^4))^(1/4)*x*EllipticE[
ArcCsc[(Sqrt[b]*x^2)/Sqrt[a]]/2, 2])/(4*b^(3/2)*(a - b*x^4)^(1/4))

Rule 228

Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Simp[(2*EllipticE[(1*ArcSin[Rt[-(b/a), 2]*x])/2, 2])/(a^(1/4)*R
t[-(b/a), 2]), x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b/a]

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 311

Int[(x_)^2/((a_) + (b_.)*(x_)^4)^(1/4), x_Symbol] :> Simp[(a + b*x^4)^(3/4)/(2*b*x), x] + Dist[a/(2*b), Int[1/
(x^2*(a + b*x^4)^(1/4)), x], x] /; FreeQ[{a, b}, x] && NegQ[b/a]

Rule 313

Int[1/((x_)^2*((a_) + (b_.)*(x_)^4)^(1/4)), x_Symbol] :> Dist[(x*(1 + a/(b*x^4))^(1/4))/(a + b*x^4)^(1/4), Int
[1/(x^3*(1 + a/(b*x^4))^(1/4)), x], x] /; FreeQ[{a, b}, x] && NegQ[b/a]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {x^6}{\sqrt [4]{a-b x^4}} \, dx &=-\frac {x^3 \left (a-b x^4\right )^{3/4}}{6 b}+\frac {a \int \frac {x^2}{\sqrt [4]{a-b x^4}} \, dx}{2 b}\\ &=-\frac {a \left (a-b x^4\right )^{3/4}}{4 b^2 x}-\frac {x^3 \left (a-b x^4\right )^{3/4}}{6 b}-\frac {a^2 \int \frac {1}{x^2 \sqrt [4]{a-b x^4}} \, dx}{4 b^2}\\ &=-\frac {a \left (a-b x^4\right )^{3/4}}{4 b^2 x}-\frac {x^3 \left (a-b x^4\right )^{3/4}}{6 b}-\frac {\left (a^2 \sqrt [4]{1-\frac {a}{b x^4}} x\right ) \int \frac {1}{\sqrt [4]{1-\frac {a}{b x^4}} x^3} \, dx}{4 b^2 \sqrt [4]{a-b x^4}}\\ &=-\frac {a \left (a-b x^4\right )^{3/4}}{4 b^2 x}-\frac {x^3 \left (a-b x^4\right )^{3/4}}{6 b}+\frac {\left (a^2 \sqrt [4]{1-\frac {a}{b x^4}} x\right ) \operatorname {Subst}\left (\int \frac {x}{\sqrt [4]{1-\frac {a x^4}{b}}} \, dx,x,\frac {1}{x}\right )}{4 b^2 \sqrt [4]{a-b x^4}}\\ &=-\frac {a \left (a-b x^4\right )^{3/4}}{4 b^2 x}-\frac {x^3 \left (a-b x^4\right )^{3/4}}{6 b}+\frac {\left (a^2 \sqrt [4]{1-\frac {a}{b x^4}} x\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt [4]{1-\frac {a x^2}{b}}} \, dx,x,\frac {1}{x^2}\right )}{8 b^2 \sqrt [4]{a-b x^4}}\\ &=-\frac {a \left (a-b x^4\right )^{3/4}}{4 b^2 x}-\frac {x^3 \left (a-b x^4\right )^{3/4}}{6 b}+\frac {a^{3/2} \sqrt [4]{1-\frac {a}{b x^4}} x E\left (\left .\frac {1}{2} \csc ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )\right |2\right )}{4 b^{3/2} \sqrt [4]{a-b x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.02, size = 66, normalized size = 0.61 \[ \frac {x^3 \left (a \sqrt [4]{1-\frac {b x^4}{a}} \, _2F_1\left (\frac {1}{4},\frac {3}{4};\frac {7}{4};\frac {b x^4}{a}\right )-a+b x^4\right )}{6 b \sqrt [4]{a-b x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^6/(a - b*x^4)^(1/4),x]

[Out]

(x^3*(-a + b*x^4 + a*(1 - (b*x^4)/a)^(1/4)*Hypergeometric2F1[1/4, 3/4, 7/4, (b*x^4)/a]))/(6*b*(a - b*x^4)^(1/4
))

________________________________________________________________________________________

fricas [F]  time = 0.78, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (-b x^{4} + a\right )}^{\frac {3}{4}} x^{6}}{b x^{4} - a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(-b*x^4+a)^(1/4),x, algorithm="fricas")

[Out]

integral(-(-b*x^4 + a)^(3/4)*x^6/(b*x^4 - a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{6}}{{\left (-b x^{4} + a\right )}^{\frac {1}{4}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(-b*x^4+a)^(1/4),x, algorithm="giac")

[Out]

integrate(x^6/(-b*x^4 + a)^(1/4), x)

________________________________________________________________________________________

maple [F]  time = 0.16, size = 0, normalized size = 0.00 \[ \int \frac {x^{6}}{\left (-b \,x^{4}+a \right )^{\frac {1}{4}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6/(-b*x^4+a)^(1/4),x)

[Out]

int(x^6/(-b*x^4+a)^(1/4),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{6}}{{\left (-b x^{4} + a\right )}^{\frac {1}{4}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(-b*x^4+a)^(1/4),x, algorithm="maxima")

[Out]

integrate(x^6/(-b*x^4 + a)^(1/4), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x^6}{{\left (a-b\,x^4\right )}^{1/4}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6/(a - b*x^4)^(1/4),x)

[Out]

int(x^6/(a - b*x^4)^(1/4), x)

________________________________________________________________________________________

sympy [C]  time = 1.86, size = 39, normalized size = 0.36 \[ \frac {x^{7} \Gamma \left (\frac {7}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {7}{4} \\ \frac {11}{4} \end {matrix}\middle | {\frac {b x^{4} e^{2 i \pi }}{a}} \right )}}{4 \sqrt [4]{a} \Gamma \left (\frac {11}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**6/(-b*x**4+a)**(1/4),x)

[Out]

x**7*gamma(7/4)*hyper((1/4, 7/4), (11/4,), b*x**4*exp_polar(2*I*pi)/a)/(4*a**(1/4)*gamma(11/4))

________________________________________________________________________________________